
OBJECT ORIENTED
PROGRAMMING USING C++

2

Procedural Concept

 The main program coordinates calls to
procedures and hands over appropriate data
as parameters

3

Object-Oriented Concept

 Objects of the program interact by sending
messages to each other

4

C++
 Supports Data Abstraction
 Supports OOP
 Encapsulation
 Inheritance
 Polymorphism

 Supports Generic Programming
 Containers
 Stack of char, int, double etc

 Generic Algorithms
 sort(), copy(), search() any container

Stack/Vector/List

5

Pointers, Dynamic Data, and
Reference Types
 Review on Pointers
 Reference Variables
 Dynamic Memory Allocation
 The new operator
 The delete operator
 Dynamic memory allocation for arrays

6

C++ Data Types

structured

array struct union class

address

pointer reference

simple

integral enum

char short int long bool

floating

float double long double

7

Array Basics
char str [8]:
 str is the base address of the array.
 We say str is a pointer because its value is

an address.
 It is a pointer constant because the value of

str itself cannot be changed by assignment.
It “points” to the memory location of a char.

str [0] [1] [2] [3] [4] [5] [6] [7]
‘H’ ‘e’ ‘l’ ‘l’ ‘o’ ‘\0’

6000

8

String Literals

char* p = “Hello”;
char[] q = “Hello”;
char* r = “Hello”;

 p[4] = ‘O’; // error: assignment to constant
 q[4] = ‘O’; // ok, q is an array of 5 characters
 p == r; // false; implementation

dependent

9

Addresses in Memory
 When a variable is declared, enough

memory to hold a value of that type is
allocated for it at an unused memory
location. This is the address of the variable

int x;
float number;
char ch;

x number ch

2000 2002 2006

10

Obtaining Memory Addresses
 The address of a non-array variable can be

obtained by using the address-of operator &
int x;
float number;
char ch;

cout << “Address of x is “ << &x << endl;

cout << “Address of number is “ << &number << endl;

cout << “Address of ch is “ << &ch << endl;

x number ch

2000 2002 2006

11

What is a Pointer Variable
 A pointer variable is a variable whose

value is the address of a location in
memory

 To declare a pointer variable, you must
specify the type of value that the pointer
will point to, for example,

int* ptr; // ptr will hold the address of an int

char* q; // q will hold the address of a char

12

Using a Pointer Variable

int x;
x = 12;

int* ptr;
ptr = &x;

2000

12

x

3000

ptr

12

NOTE: Because ptr holds the address of x,
we say that ptr “points to” x

2000

13

*: Dereference Operator

int x;
x = 12;

int* ptr;
ptr = &x;

cout << *ptr;

2000

12

x

3000

ptr

12

2000

NOTE: The value pointed to by ptr is denoted
by *ptr

14

Using the Dereference Operator

int x;
x = 12;

int* ptr;
ptr = &x;

*ptr = 5;

2000

12

x

3000

ptr

12

2000

// changes the value at
the address ptr points
to 5

5

15

Self-Test on Pointers

char ch;
ch = ‘A’;

char* q;
q = &ch;

*q = ‘Z’;
char* p;

p = q;

4000

A

ch

5000

4000

q

Z

6000

p

4000

// now both p and q point to ch

16

Pointers to Arrays

ptr

‘H’ ‘e’ ‘l’ ‘l’ ‘o’ ‘\0’

char msg[] =“Hello”;
char* ptr;
ptr = msg;
*ptr = ‘M’ ;
ptr++;

*ptr = ‘a’;

ptr = &msg[4];
// *ptr = o

msg
3000

3000

‘M’ ‘a’

3001

17

Pointers and Constants
char s[] = “Hello”;
char* p = ‘Z’;
const char* pc = s; // pointers to constant
pc[3] = ‘g’; // error
pc = p; // ok

char *const cpc = s; // constant pointer
cpc[3] = ‘a’; // ok
cpc = p; // error

18

Reference Variables
 Reference variable = alias for another variable
 Contains the address of a variable (like a pointer)
 No need to perform any dereferencing (unlike a pointer)
 Must be initialized when it is declared

int x = 5;
int &z = x; // z is another name for x
int &y ; // Error: reference must be initialized
cout << x << endl; -> prints 5
cout << z << endl; -> prints 5
z = 9; // same as x = 9;
cout << x << endl; -> prints 9
cout << z << endl; -> prints 9

19

Why Reference Variables
 Primarily used as function parameters
 Advantages of using references
 You don’t have to pass the address of a

variable
 You don’t have to dereference the

variable inside the called function

20

Reference Variable Example
#include <iostream.h>
// Function prototypes

(required in C++)

void p_swap(int *, int *);
void r_swap(int&, int&);
int main (void){
int v = 5, x = 10;
cout << v << x << endl;
p_swap(&v,&x);
cout << v << x << endl;
r_swap(v,x);
cout << v << x << endl;
return 0;

}

void r_swap(int &a, int &b)
{
int temp;
temp = a; (2)
a = b; (3)
b = temp;
}

void p_swap(int *a, int *b)
{

int temp;
temp = *a; (2)
*a = *b; (3)
*b = temp;

}

21

Dynamic Memory Allocation

 Static memory -
where global and static
variables live

 Heap memory -
dynamically allocated at
execution time
- "managed" memory
accessed using pointers

 Stack memory - used
by automatic variables

In C and C++, three types of memory are used by programs:

22

Three Kinds of Program Data
 STATIC DATA: Allocated at compiler time

 DYNAMIC DATA: explicitly allocated and
deallocated during program execution by
C++ instructions written by programmer
using operators new and delete

 AUTOMATIC DATA: automatically created at
function entry, resides in activation frame
of the function, and is destroyed when
returning from function

23

Dynamic Memory Allocation
Diagram

static data

Stack

Heap
R

un-tim
e allocated

m
em

ory

C
om

pile-tim
e

allocated
m

em
oryProgram

code

High-end

Low-end

24

Dynamic Memory Allocation
 In C, functions such as malloc() are used to

dynamically allocate memory from the
Heap.

 In C++, this is accomplished using the
new and delete operators

 new is used to allocate memory during
execution time
 returns a pointer to the address where

the object is to be stored
 always returns a pointer to the type that

follows the new

25

Operator new Syntax

new DataType

new DataType []

 If memory is available, in an area called the heap (or
free store) new allocates the requested object or
array, and returns a pointer to (address of) the
memory allocated.

 Otherwise, program terminates with error message.
 The dynamically allocated object exists until the

delete operator destroys it.

26

Operator new

char* ptr;

ptr = new char;

*ptr = ‘B’;

cout << *ptr;

 NOTE: Dynamic data has no variable name

2000

???

ptr

5000

5000

‘B’

27

The NULL Pointer
 There is a pointer constant called the “null

pointer” denoted by NULL
 But NULL is not memory address 0.

 NOTE: It is an error to dereference a pointer
whose value is NULL. Such an error may cause
your program to crash, or behave erratically.
It is the programmer’s job to check for this.

while (ptr != NULL) {
. . . // ok to use *ptr here

}

28

Operator delete Syntax

delete Pointer

delete [] Pointer

 The object or array currently pointed to by Pointer is
deallocated, and the value of Pointer is undefined. The
memory is returned to the free store..

 Good idea to set the pointer to the released memory to
NULL

 Square brackets are used with delete to deallocate a
dynamically allocated array.

29

Operator delete

char* ptr;

ptr = new char;

*ptr = ‘B’;

cout << *ptr;

delete ptr;

5000

5000

‘B’

2000

ptr

???

NOTE:
delete deallocates the
memory pointed to by ptr

30

Example

‘B’ ‘y’ ‘e’ ‘\0’
‘u’

ptr
3000

???

6000

NULL

// deallocates the array pointed to by ptr
// ptr itself is not deallocated
// the value of ptr becomes undefined

char *ptr ;

ptr = new char[5];

strcpy(ptr, “Bye”);

ptr[0] = ‘u’;

delete [] ptr;

ptr = NULL;

31

Pointers and Constants
char* p;
p = new char[20];

char c[] = “Hello”;
const char* pc = c; //pointer to a constant
pc[2] = ‘a’; // error
pc = p;

char *const cp = c; //constant pointer
cp[2] = ‘a’;
cp = p; // error

const char *const cpc = c; //constant pointer to a const
cpc[2] = ‘a’; //error
cpc = p; //error

32

Take Home Message
 Be aware of where a pointer points to, and

what is the size of that space.

 Have the same information in mind when you
use reference variables.

 Always check if a pointer points to NULL
before accessing it.

33

Hint for Lab #1
 How to parse the string from user input?
 char *strtok (char *s, const char *delim);
 strtok parses string s into tokens. The first call

should have s as the first element
 Subsequent calls should have the first argument

set to NULL
 How to convert a character number to

an integer?
 int atoi (const char *nptr)
 atoi converts the initial portion of the string

pointed by nptr to int.

